เรียกว่าค่อนข้างไพรม์ (coprime หรือค่อนข้างไพรม์ซึ่งกันและกัน) สำหรับคู่ของจำนวนเต็มใด ๆ ที่ไม่มีตัวหารร่วมนอกเหนือจาก 1
กล่าวอีกนัยหนึ่งจำนวนเต็มสองจำนวนเป็นไพรม์สัมพัทธ์หากในการสลายตัวเป็นจำนวนเฉพาะพวกมันไม่มีปัจจัยที่เหมือนกัน
ตัวอย่างเช่นหากเลือก 4 และ 25 การแยกตัวประกอบเฉพาะของแต่ละตัวประกอบคือ2²และ5²ตามลำดับ ดังจะเห็นได้ว่าสิ่งเหล่านี้ไม่มีปัจจัยร่วมใด ๆ ดังนั้น 4 และ 25 จึงเป็นราคาที่สัมพันธ์กัน
ในทางกลับกันถ้าเลือก 6 และ 24 เมื่อทำการสลายตัวเป็นปัจจัยเฉพาะเราจะได้ 6 = 2 * 3 และ 24 = 2³ * 3
อย่างที่คุณเห็นสองนิพจน์สุดท้ายนี้มีปัจจัยอย่างน้อยหนึ่งอย่างที่เหมือนกันดังนั้นจึงไม่ใช่ไพรม์สัมพัทธ์
ญาติญาติ
รายละเอียดอย่างหนึ่งที่ต้องระวังคือการบอกว่าจำนวนเต็มคู่เป็นไพรม์สัมพัทธ์ไม่ได้หมายความว่าค่าใด ๆ เป็นจำนวนเฉพาะ
ในทางกลับกันคำจำกัดความข้างต้นสามารถสรุปได้ดังต่อไปนี้จำนวนเต็มสองจำนวน "a" และ "b" เป็นไพรม์สัมพัทธ์ในกรณีที่ตัวหารร่วมที่ยิ่งใหญ่ที่สุดของสิ่งเหล่านี้คือ 1 นั่นคือ gcd ( a, b) = 1.
ข้อสรุปสองประการจากคำจำกัดความนี้คือ:
- ถ้า« a » (หรือ« b ») เป็นจำนวนเฉพาะดังนั้น gcd (a, b) = 1
- ถ้า« a »และ« b »เป็นจำนวนเฉพาะดังนั้น gcd (a, b) = 1
นั่นคือถ้าอย่างน้อยหนึ่งในตัวเลขที่เลือกเป็นจำนวนเฉพาะคู่ของตัวเลขนั้นจะเป็นไพรม์สัมพัทธ์โดยตรง
คุณสมบัติอื่น ๆ
ผลลัพธ์อื่น ๆ ที่ใช้ในการพิจารณาว่าตัวเลขสองตัวเป็นราคาที่สัมพันธ์กันหรือไม่:
- ถ้าจำนวนเต็มสองจำนวนติดต่อกันแสดงว่าเป็นไพรม์สัมพัทธ์
- จำนวนธรรมชาติสองจำนวน "a" และ "b" เป็นไพรม์สัมพัทธ์ในกรณีที่และเฉพาะในกรณีที่ตัวเลข "(2 ^ a) -1" และ "(2 ^ b) -1" เป็นไพรม์สัมพัทธ์
- จำนวนเต็มสองจำนวน« a »และ« b »เป็นไพรม์สัมพัทธ์ถ้าและเฉพาะในกรณีที่เมื่อสร้างกราฟจุด (a, b) ในระนาบคาร์ทีเซียนและสร้างเส้นที่ผ่านจุดกำเนิด (0,0) และ ( a, b) ไม่มีจุดใด ๆ ที่มีพิกัดจำนวนเต็ม
ตัวอย่าง
1.-พิจารณาจำนวนเต็ม 5 และ 12 การสลายตัวในตัวประกอบเฉพาะของทั้งสองจำนวนคือ 5 และ2² * 3 ตามลำดับ สรุปได้ว่า gcd (5,12) = 1 ดังนั้น 5 และ 12 จึงเป็นไพรม์สัมพัทธ์
2.-ให้ตัวเลข -4 และ 6 จากนั้น -4 = -2²และ 6 = 2 * 3 เพื่อให้ LCD (-4,6) = 2 ≠ 1 สรุปได้ว่า -4 และ 6 ไม่ใช่ช่วงเวลาสัมพัทธ์
หากเราดำเนินการสร้างกราฟเส้นที่ผ่านคู่ลำดับ (-4.6) และ (0,0) และเพื่อกำหนดสมการของเส้นดังกล่าวจะสามารถตรวจสอบได้ว่าผ่านจุด (-2,3)
สรุปได้อีกครั้งว่า -4 และ 6 ไม่ใช่ช่วงเวลาสัมพัทธ์
3.-ตัวเลข 7 และ 44 เป็นช่วงเวลาสัมพัทธ์และสามารถสรุปได้อย่างรวดเร็วด้วยสิ่งที่ได้กล่าวไว้ข้างต้นเนื่องจาก 7 เป็นจำนวนเฉพาะ
4.-พิจารณาตัวเลข 345 และ 346 เป็นตัวเลขสองตัวที่ต่อเนื่องกันจะได้รับการตรวจสอบว่า gcd (345,346) = 1 ดังนั้น 345 และ 346 จึงเป็นราคาที่สัมพันธ์กัน
5.-หากพิจารณาตัวเลข 147 และ 74 แล้วค่าเหล่านี้เป็นราคาสัมพัทธ์เนื่องจาก 147 = 3 * 7²และ 74 = 2 * 37 ดังนั้น LCD (147,74) = 1
6.-ตัวเลข 4 และ 9 เป็นราคาที่สัมพันธ์กัน เพื่อแสดงให้เห็นถึงสิ่งนี้สามารถใช้ลักษณะที่สองที่กล่าวถึงข้างต้นได้ อันที่จริง 2 ^ 4 -1 = 16-1 = 15 และ 2 ^ 9-1 = 512-1 = 511
ตัวเลขที่ได้คือ 15 และ 511 การแยกตัวประกอบเฉพาะของตัวเลขเหล่านี้คือ 3 * 5 และ 7 * 73 ตามลำดับดังนั้น LCD (15,511) = 1
อย่างที่คุณเห็นการใช้ลักษณะที่สองเป็นงานที่ยาวนานและลำบากกว่าการตรวจสอบโดยตรง
7.-พิจารณาตัวเลข -22 และ -27 จากนั้นสามารถเขียนตัวเลขเหล่านี้ใหม่ได้ดังนี้: -22 = -2 * 11 และ -27 = -3³ ดังนั้น gcd (-22, -27) = 1 ดังนั้น -22 และ -27 จึงเป็นราคาสัมพัทธ์
อ้างอิง
- Barrantes, H. , Díaz, P. , Murillo, M. , & Soto, A. (1998) รู้เบื้องต้นเกี่ยวกับทฤษฎีจำนวน EUNED
- Bourdon, PL (1843) องค์ประกอบทางคณิตศาสตร์ ห้องสมุดแม่ม่ายและลูก ๆ ของ Calleja
- Castañeda, S. (2016). หลักสูตรพื้นฐานของทฤษฎีจำนวน มหาวิทยาลัยนอร์ทเทิร์น.
- เชวารา MH (nd) ชุดตัวเลขทั้งหมด EUNED
- สถาบันฝึกหัดครูระดับสูง (สเปน), JL (2004) ตัวเลขรูปร่างและปริมาตรในสภาพแวดล้อมของเด็ก กระทรวงศึกษาธิการ.
- Palmer, CI, & Bibb, SF (1979). คณิตศาสตร์เชิงปฏิบัติ: เลขคณิตพีชคณิตเรขาคณิตตรีโกณมิติและกฎสไลด์ (พิมพ์ซ้ำ) Reverte
- ร็อค, นิวเม็กซิโก (2549). พีชคณิตฉันง่าย! ง่ายมาก. ทีม Rock Press
- สมิ ธ , SA (2000). พีชคณิต. การศึกษาของเพียร์สัน.
- Szecsei, D. (2549). คณิตศาสตร์พื้นฐานและพีชคณิตเบื้องต้น (มีภาพประกอบ) อาชีพกด.
- Toral, C. , & Preciado, M. (1985). วิชาคณิตศาสตร์ครั้งที่ 2. กองบรรณาธิการ Progreso
- Wagner, G. , Caicedo, A. , และ Colorado, H. (2010) หลักการพื้นฐานของเลขคณิต ELIZCOM SAS